Линии волс. Курсовая работа: Волоконно-оптические линии связи. Электрические линии связи

  • Дата: 09.07.2019

Технологический век дал нам много ярких изобретений и открытий, но, по-видимому, именно возможность передачи информации на большие расстояния внесла один из наиболее весомых вкладов в развитие технологий. Носители, по которым передаются данные, прошли долгий путь развития от медной проволоки столетие назад до современных оптоволоконных кабелей. В результате многократно увеличились объемы информации, скорости и расстояния ее передачи, что расширило пределы технологического развития во всех областях.

Применение волс в вычислительных сетях

Все цены на продукты, упомянутые в этом документе, могут быть изменены без предварительного уведомления. Международные права = только английский. В дополнение к своей исторической роли транзитного сайта для товаров и людей, Панама предлагает свое обслуживание в качестве точки соединения для волоконно-оптических кабелей, используемых для транспортировки информационных пакетов для всего мира.

Эти подводные волоконно-оптические кабели представляют собой информационные магистрали, где миллионы мегабит проходят с голосом и данными, которые движутся почти со скоростью света. Эти кабели позволяют миллионам людей поддерживать свои связи посредством электронной почты, видео, чатов, видеоконференций, электронных платежных операций, государственных и финансовых коммуникаций.

Современные оптоволоконные кабели из стекла с малыми потерями обеспечивают практически неограниченную полосу пропускания и имеют массу других преимуществ над ранее созданными носителями. Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника (рис. 1).

Такое присутствие кабелей делает Панаму телекоммуникационным центром, поскольку это центр конвергенции всей информации, которая приходит и идет для разных стран. Некоторые специалисты говорят, что этот телекоммуникационный узел уступит место цифровому концентратору или инновационному центру в Северной и Южной Америке.

Панама является наиболее удобным пунктом обмена интернет-трафиком, чья функция будет заключаться в том, чтобы объединить межрегиональный трафик Центральной Америки и Карибского бассейна с северными и южными регионами, сказал Пабло Руидиас, директор по вопросам Интернета, интеграции и мобильности Национального органа по Государственные инновации.

Рис. 1. Схема простейшей оптоволоконной системы передачи информации

Оптический передатчик преобразует аналоговый или цифровой электрический сигнал в соответствующий ему световой сигнал. Источником света может быть либо светодиод, либо твердотельный лазер. Чаще всего используются источники света с длиной волны 850, 1300 и 1550 нанометров.

«Как и Канал и его логистический центр, Панама имеет исключительные условия для функционирования телекоммуникационного узла, который безопасно и быстро перемещает международный коммуникационный трафик», - сказал Руидиас. Кроме того, он отметил, что страна находится в зоне низких масштабов ураганов и имеет несколько интегрированных центров обработки данных, которые обеспечивают размещение, непредвиденные обстоятельства и программы, которые обеспечивают непрерывность бизнеса для многих банков и многонациональных компаний в регионе.

Но не только эти кабели дают преимущество Панаме, но на территории также действуют четыре компании мобильной связи, которые делают ее одной. Из стран региона с самым высоким проникновением в мобильные услуги, сказал Алкин Сауседо, заместитель директора по радио и телевидению Национального органа государственной службы.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон, которые для света работают как волноводы (световоды). По конструкции оптоволоконный кабель похож на электрический, но содержит специальные элементы для защиты находящихся внутри него световодов. Соединение многокилометровых кабелей выполняется с помощью разъемных и неразъемных оптических соединителей.

Это позволило больше конкуренции между службами, что на рынке есть предложения телекоммуникаций с новейшими технологиями, с легким доступом и разумными ценами для пользователей, добавил чиновник. Развитие телекоммуникаций привлекает больше инвестиций для предоставления множества услуг, таких как логистика и финансы, а также для содействия инициативам в области информационных и коммуникационных технологий, что способствует развитию страны.

Виды современной связи

«Известно, что сектор телекоммуникаций является одним из самых динамичных, поэтому не должно быть расслабления в обучении людских ресурсов по этому вопросу», - добавил Сауседо. В то время как Фернандес напомнил, что Панама является страной с самой высокой конкурентоспособностью логистики в Латинской Америке и входит в число 25% стран с самым высоким рейтингом во всем мире, согласно рейтингу Всемирного банка.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется либо лавинный фотодиод, либо (чаще) PIN-фотодиод.

Оптоволоконные системы передачи информации - оптические приемник и передатчик, связанные оптоволоконным кабелем - имеют много преимуществ над обычными медными проводами и коаксиальными кабелями:

Наша модель экономики обслуживания должна продолжать делать ставку на использование наших конкурентных преимуществ в логистическом секторе, а также на пути к консолидации как технологического центра региона, - сказал Фернандес. Помимо попытки повысить ценность товара, проходящего через корабли через канал, сеть подводных волоконно-оптических кабелей может использоваться для привлечения большего количества компаний и центров обработки информации.

Эффект мультипликатора в стране

В Панаме мы активно развиваем телекоммуникационный узел при поддержке государственного, частного и образовательного секторов. Крупнейшие инвестиции предназначены для новых центров обработки данных, увеличения пропускной способности и возможности подключения в стране, но больше в сфере образования, что имеет решающее значение для технологического развития. Мы работаем в технологической обсерватории для страны, и мы также хотим, чтобы был внедрен Институт перспективных исследований в области технологий.

Почему оптоволоконные системы обладают этими полезными свойствами? Прочитав эту брошюру и поняв принципы, лежащие в основе оптоволоконной технологии, вы получите ответ на этот вопрос. Каждому из трех компонентов оптоволоконных систем - передатчикам, приемникам и кабелям - посвящен свой раздел.

Оптические передатчики

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В зависимости от типа сигнала могут использоваться различные способы модуляции - включение и выключение света или его плавное изменение между заданными уровнями пропорционально входному сигналу. На рис. 2 эти два основных способа модуляции показаны на графиках зависимости интенсивности света от времени.

У телекоммуникационного узла есть эффект умножения, поскольку он улучшает качество рабочей силы, создает лучшие возможности для высокотехнологичных рабочих мест, улучшает возможности подключения для пользователей и дает большую известность стране в качестве места назначения для инвестиций в высокотехнологичные отрасли.

Кристалл был обнаружен за 500 лет до Рождества Христова; Гораздо позже римляне извлекли волокна, которые в настоящее время используются, среди прочего, для передачи информации на высокой скорости. Уже более 10 лет волоконная оптика стала одной из самых передовых технологий, используемых в качестве средства передачи. Этот новый материал вызвал революцию в процессах телекоммуникаций во всех смыслах: от достижения большей скорости и уменьшения шума и помех почти до точки умножения форм отправки в сообщениях и приема по телефону.



Рис. 2. Основные методы модуляции светового потока

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды). Для использования в оптоволоконных системах эти устройства изготавливаются в корпусах, позволяющих подвести оптоволокно максимально близко к зоне, излучающей свет. Это необходимо для того, чтобы направить как можно больше света в световод. Иногда излучатель оборудован микроскопической сферической линзой, позволяющей собрать весь свет «до последней капли» и направить его в волокно. В некоторых случаях стеклянная нить присоединяется непосредственно к поверхности излучающего свет кристалла.

С помощью шестиволоконного кабеля можно транспортировать сигнал более пяти тысяч каналов или основных линий, в то время как для обслуживания такого же количества пользователей требуется несколько пар обычных медных кабелей. Толщина волокна подобна толщине человеческого волоса.

Оптические волокна представляют собой чрезвычайно компактные филаменты высокой чистоты: толщина волокна подобна толщине человеческого волоса. Изготовленный при высокой температуре на основе кремния, его производственный процесс контролируется компьютерами, чтобы обеспечить показатель преломления его сердцевины, который является направлением световой волны, равномерным и избегать отклонений. Среди его основных характеристик можно отметить, что они компактны, легки, с низкими потерями сигнала, достаточной пропускной способностью и высокой степенью надежности, поскольку они невосприимчивы к электромагнитным радиочастотным помехам.

Чаще всего в оптических передатчиках в качестве источника света используются светоизлучающие диоды (светодиоды) и полупроводниковые лазеры (лазерные диоды).

У светодиодов площадь излучающего элемента довольно велика, и поэтому они излучают не так эффективно, как лазеры. Однако светодиоды широко используются на линиях связи малой и средней длины. Светодиоды гораздо дешевле лазеров, имеют почти линейную зависимость интенсивности излучения от величины электрического тока, интенсивность их излучения слабо зависит от температуры. Лазеры, напротив, имеют очень малую площадь излучающей поверхности и могут отдавать в оптоволокно гораздо большую мощность, чем светодиоды. Они тоже линейны по току, но очень сильно подвержены влиянию температуры и для достижения необходимой стабильности требуют применения более сложных электронных схем. Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Телефония, кабельное телевидение, вычислительная техника, некоторые из ее утилит. Благодаря своему охвату, нечувствительность к паразитам и его пропускная способность больше, чем в коаксиальных кабелях, оптоволоконная передача позволяет одновременно передавать голоса, компьютерные сигналы и даже анимированные изображения.

Волоконно-оптический кабель толщиной карандаша способен одновременно отправлять около двухсот тысяч телевизионных программ или миллион телефонных разговоров. В волоконно-оптической системе передачи имеется передатчик, который отвечает за преобразование электромагнитных волн в оптическую или световую энергию, поэтому он считается активным компонентом этого процесса. Как только световой сигнал передается крошечными волокнами, на другом конце схемы есть третий компонент, который называется оптическим детектором или приемником, задачей которого является преобразование светового сигнала в электромагнитную энергию, аналогичную исходному сигналу, Базовая система передачи в этом порядке состоит из входного сигнала, усилителя, источника света, оптического корректора, волоконно-оптической линии, сращивания, волоконно-оптической линии, оптического корректора, приемника, усилителя и выходного сигнала.

Поскольку лазеры довольно дороги, они в основном используются там, где требуется передача данных на большие расстояния.

Применяемые в оптоволоконной связи светодиоды и лазеры излучают в инфракрасной части спектра электромагнитных волн и поэтому их свет невидим человеческим глазом без применения специальных средств. Длина волны излучения выбрана с учетом максимальной прозрачности материала световодов и наивысшей чувствительности фотодиодов. Наиболее часто используемые сейчас длины волн - 850, 1300 и 1550 нанометров. Для всех трех длин волн выпускаются как светодиоды, так и лазеры.

Более 5 миллионов домов, подключенных к Интернету. Но, пожалуй, самым популярным он пользуется интернет. В испанском государстве ежемесячно тысячи домохозяйств решают включить Интернет. Целью этой исследовательской работы является изучение волоконно-оптических сетей, используемых для управления данными электрических подстанций по линиям передачи в качестве транспортного средства. Также выделяются различные сетевые топологии взаимосвязанной системы Венесуэлы, а также формы сбора данных на подстанциях и различных типах волоконно-оптических кабелей, а также физические средства связи, их принадлежности и протоколы.

Как уже было сказано, световой поток светодиодов и лазеров модулируется одним из двух способов: «включено-выключено» или линейным непрерывным изменением интенсивности. На рис. 3 показаны упрощенные схемы, реализующие оба способа модуляции. Для управления излучателем используется транзистор, на базу которого поступает предварительно сформированный цифровой сигнал. Максимальная частота модуляции при этом определяется электронной схемой и свойствами излучателя. Со светодиодами легко достижимы частоты в несколько сотен мегагерц, с лазерами - в тысячи мегагерц. На схеме не показан узел термостабилизации (светодиодам он обычно вообще не требуется).

Переключатели. изменяют характеристики показателя преломления обоих слоев. в результате чего сохраняются свойства света, необходимые для распространения молнии. как бор или германий в сердцевине и слоях покрытия, которые добавляются в процессе производства. Показатель преломления сердечника диоксида кремния имеет значение вокруг огней и других устройств, которые часто встречаются в промышленных средах. Он представляет ряд преимуществ в отношении других средств связи. Электромагнитный иммунитет. В промышленности используется волоконно-оптическая связь для повышения надежности и пропускной способности передачи данных и контроля1.

Линейная модуляция осуществляется с помощью схемы на основе операционного усилителя (рис. 3B). Модулирующий сигнал подается на инвертирующий вход усилителя, постоянное смещение поступает на неинвертирующий вход. Здесь также не показана схема термостабилизации.



Рис. 3. Методы модуляции светового потока светодиодов
и полупроводниковых лазеров

Волоконно-оптические. способный проводить энергию оптического характера. Безопасность в отношении его обработки Безопасность в отношении передачи данных Одним из наиболее значительных технологических достижений в передаче данных является разработка волоконно-оптических систем связи. Волокно невосприимчиво ко всем электрическим помехам, вызванным большими двигателями. около 5, а покрытие немного меньше. Благодаря присущей природе оптической связи. Волоконная оптика - гибкая и чрезвычайно тонкая среда. 4, 2 -н.

Малый размер например:  Широкая полоса пропускания. Рисунок 1 Поперечное сечение волоконно-оптического кабеля. Коммуникации. 2 Типичные диаметры волокон. Волокно с таким размером известно как одномодовое волокно, способное распространять самую высокую скорость передачи данных с наименьшим затуханием. Он часто используется для передачи данных на высокой скорости или на большие расстояния. Его небольшая числовая апертура и малый размер сердечника делают мощность источника, связанного с волокном, наименее из всех многомодовых волокон.

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие. Кроме того, применяются широтно-импульсная и частотно-импульсная модуляция. При широтно-импульсной модуляции используется непрерывный поток импульсов, двумя различными длительностями которых кодируются логические уровни сигнала. При частотно-импульсной модуляции все импульсы имеют одинаковую длительность, но частота их следования меняется в зависимости от передаваемого логического уровня.

Однако из всех многомодовых волокон он имеет самую высокую потенциальную полосу пропускания. 5. Это волокно в настоящее время наиболее часто используется для многомодовой передачи, став стандартным для многих приложений. Это волокно обладает хорошей способностью к соединению света, аналогичного тому, что относится к сердечнику 100 мкм, и использует покрытие стандартного диаметра 125 мкм. Это самое простое волокно для соединения, потому что его ядро ​​больше. Он менее чувствителен к допускам соединителя и накоплению грязи в них.

Он соответствует наибольшему количеству света от источника, но имеет потенциальную пропускную способность значительно ниже, чем другие, с меньшими размерами ядра, он используется в условиях низкой скорости передачи данных. Это не очень распространено и может быть очень трудно получить.



Рис 4. Различные методы оптической передачи аналоговой
и цифровой информации

В цифровом сигнале, для передачи которого используется модуляция «включено-выключено», логические уровни могут кодироваться различными способами. В наиболее простом из них логической единице соответствует наличие света, логическому нулю - его отсутствие.

Для аналоговой модуляции также существует несколько методов. Простейший из них - линейная модуляция, где интенсивность источника света прямо связана с величиной передаваемого сигнала. В других методах передаваемый сигнал вначале модулирует высокочастотную несущую (а в некоторых случаях и несколько несущих), а затем этот сложный сигнал управляет яркостью источника света.

На рис. 4 показана зависимость интенсивности света от времени для этих методов модуляции.

Частота света (который тоже является электромагнитным излучением) весьма велика - порядка миллионов гигагерц. Полоса частот излучателей света (лазеров и светодиодов) достаточно широка, но, к сожалению, современная технология не дает возможности селективного использования этой полосы, как это делается при передаче информации по радио. В оптическом передатчике происходит включение и выключение всей полосы частот сразу, как это делалось в первых искровых передатчиках на заре эры радио. Со временем ученые преодолеют это препятствие и станет возможной «когерентная передача», что определит дальнейшее развитие оптоволоконной технологии.

Световоды

Ввод света в оптическое волокно

Чем выше мощность излучателя, тем больше света попадает в световод.

После того, как передатчик преобразовал входной электрический сигнал в нужным образом модулированный свет, его необходимо ввести в оптическое волокно. Как уже говорилось, для этого существует два способа: прямое соединение излучающего элемента со световодом, и размещение световода в непосредственной близости от излучателя. При использовании второго способа количество света, которое попадет в оптоволокно, зависит от четырех факторов: интенсивности излучения, площади излучающего элемента, входного угла световода и потерь на отражение и рассеяние. Кратко рассмотрим все эти факторы.

Интенсивность излучения светодиода или лазера зависит от его конструкции и обычно выражается как общая мощность излучения при определенном токе. Иногда эта цифра указывается как реальная мощность, передаваемая в оптоволокно конкретного типа. При прочих равных условиях чем выше мощность излучателя, тем больше света попадает в световод.

Отношение площадей излучающего элемента и сердцевины оптоволокна определяет долю общей мощности, которая попадает в световод - чем меньше это отношение, тем больше света окажется в волокне.

Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Входной угол оптоволокна характеризуют его числовой апертурой (numerical aperture, NA), которая определяется как синус половины входного угла. Типовые значения NA лежат в диапазоне от 0,1 до 0,4, что соответствует входному углу от 11 до 46 градусов. Только тот свет, который вошел в оптоволокно под углом, меньшим или равным входному, будет распространяться по световоду.

Потери. Кроме потерь от загрязнений на поверхности оптоволокна, всегда существуют неизбежные потери интенсивности света, вызванные отражением на входе в световод и выходе из него. Это так называемые френелевские потери (по имени французского физика О. Ж. Френеля), которые составляют примерно 4% общей интенсивности на каждой границе раздела стекло-воздух. При необходимости для снижения этих потерь на соединяемые стеклянные поверхности наносят немного специального оптического геля.

Типы оптического волокна

Сейчас используется два типа оптического волокна: со ступенчатым и плавным изменением показателя преломления вдоль радиуса (профилем). На рис. 5 показано, что свет распространяется по таким световодам по-разному.



Рис 5. Распространение света по оптоволокну со ступенчатым и плавным профилями показателя преломления

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм.

Как показано на рисунке, волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления. Такое различие показателей преломления заставляет свет отражаться от границы между сердцевиной и оболочкой на всем пути распространения. Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к периферии. В результате световод, подобно протяженной линзе, постоянно отклоняет распространяющийся по нему свет к центру.

Оптоволокно характеризуется толщиной сердцевины и оболочки, которую выражают в микрометрах. Сейчас наиболее распространены три типоразмера оптоволокна общего назначения, хотя существуют и другие типоразмеры для специальных применений. Это многомодовые световоды 50/125 и 62,5/125 мкм и одномодовые 8-10/125 мкм. Первые два типоразмера обычно используются вместе со светодиодными излучателями на линиях передачи малой и средней длины. Оптоволокно с сердцевиной 8-10 мкм чаще всего применяется в телекоммуникационных системах большой протяженности совместно с лазерными оптическими передатчиками.

Потери в оптическом волокне

Кроме потерь интенсивности сигнала в соединении излучателя и световода, потери происходят также и при распространении света по оптоволокну. Сердцевина оптического волокна делается из сверхчистого стекла с очень низкими потерями. Стекло должно иметь высочайшую прозрачность, поскольку по изготовленному из него волокну свет должен проходить километры. Давайте посмотрим на обычное оконное стекло. Оно прозрачно, но только потому, что его толщина всего 3-4 мм. Достаточно взглянуть на торец стеклянной пластины и увидеть его зеленую окраску, чтобы понять, как сильно она поглощает свет даже на длине в десяток-другой сантиметров. Легко представить, как же мало света пройдет через стометровую толщу оконного стекла!

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм по- тери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Большинство световодов общего назначения дает на длине волны 850 нм потери от 4 до 6 децибел на километр (то есть на одном километре теряется от 60 до 75% света). На длине волны 1300 нм потери снижаются до 3-4 дБ/км (50-60%), а на 1550 нм они еще меньше - не является чем-то необычным значение 0,5 дБ/км (10%).

Основной причиной потерь является поглощение света неоднородностями и рассеяние на них. Другая причина потерь в оптоволокне - его чрезмерный изгиб, при котором часть света выходит из сердцевины. Во избежание таких потерь радиус изгиба оптоволоконного кабеля при прокладке должен быть не менее 2,5 см (а чаще и еще больше).

Полоса пропускания оптоволокна

Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод.


Чем меньше мод в излучении, тем шире полоса пропускания оптоволокна.

Перечисленные выше потери не зависят от частоты модуляции, то есть уровень потерь в 3 дБ означает, что до получателя не дойдет 50% света независимо от того, модулирован он сигналом 10 Гц или 100 МГц. Однако полоса пропускания оптоволокна для модулированного сигнала ограничена, и тем сильнее, чем длиннее световод. Причину этого ограничения поясняет рис. 6. Свет, вошедший в оптоволокно под малым углом к его оси (M1) распространяется по более короткому пути, чем тот, который входит под углом, близким к предельному входному (M2). В результате различные лучи, исходящие от одного и того же источника (называемые модами), приходят к даль- нему концу световода не одновременно, что приводит к эффекту размывания - уширению коротких импульсов. Это ограничивает максимальную частоту сигнала, передаваемого по оптоволоконному кабелю. Говоря кратко, чем меньше мод в излучении, тем шире полоса пропускания оптоволокна. Чтобы уменьшить число распространяющихся мод, сердцевину волокна делают тоньше. Одномодовое волокно с диаметром сердцевины от 8 до 10 мкм имеет значительно более широкую полосу пропускания, чем многомодовые волокна с диаметром 50 и 62,5 мкм, по которым может одновременно распространяться большое число мод излучения.



Рис. 6. Полоса частот модуляции, пропускаемых оптоволокном,
ограничивается существованием различных путей распространения света

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается. Например, кабель, имеющий полосу 500 МГц на длине 1 км, при длине 2 км сможет обеспечить полосу в 250 МГц, а при 5 км - лишь в 100 МГц.

Очень широкая полоса пропускания одномодовых световодов позволяет практически не обращать внимания на их длину. Однако для многомодовых волокон этот фактор важен, поскольку нередко частотный диапазон передаваемых сигналов превосходит полосу пропускания кабелей.

Конструкция оптоволоконного кабеля

Типовая полоса пропускания для обычных волоконных световодов составляет несколько мегагерц на километр для волокна с очень большим диаметром сердцевины, несколько сотен мегагерц на километр для стандартного многомодового волокна и тысячи мегагерц для одномодовых оптических волокон. С ростом длины кабеля полоса пропускания пропорционально снижается.

Оптоволоконные кабели выпускаются разного диаметра и конструкции. Как и в случае коаксиальных, конструкция оптоволоконных кабелей определяется его предназначением. Внешне оптоволоконный кабель похож на коаксиальный. На рис. 7 схематично показано устройство стандартного оптоволоконного кабеля.

Оптоволокно имеет защитное покрытие, предохраняющее его от повреждений в производственном процессе. Оно помещается в облегающую его поливинилхлоридную трубку, где может свободно изгибаться при прокладке вокруг углов стен и в кабельных каналах.

Эта трубка окружена оплеткой из кевлара, принимающей на себя основное механическое усилие, которое действует на кабель при прокладке. Наконец, внешняя оболочка из поливинилхлорида защищает весь кабель и предотвращает проникновение влаги внутрь.

Кабели такой конструкции пригодны для прокладки внутри зданий, где не требуется значительная стойкость к внешним воздействиям. Существуют кабели практически для любого варианта прокладки, например, для прямой укладки в грунт, армированные устойчивой к грызунам внешней оболочкой из стали и сертифицированные UL негорючие кабели для прокладки над фальшпотолками. Выпускаются и многожильные кабели с цветовой кодировкой.



Рис. 7. Устройство стандартного оптоволоконного кабеля

Другие типы световодов

Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Еще два типа световодов - кварцевые с сердцевиной очень большого диаметра и целиком изготовленные из пластмассы - обычно не используются в телекоммуникациях. Кварцевые световоды используются для передачи мощных световых потоков, например в лазерной хирургии. Пластмассовые световоды применяются для передачи данных на очень малые расстояния внутри электронного оборудования совместно с недорогими светодиодами. Одно из стандартных применений таких световодов - оптическая развязка цепей управления в высоковольтных источниках питания.

Оптические соединители

С помощью оптических соединителей оптоволоконные кабели подключаются к оборудованию или соединяются между собой. Они похожи на электрические разъемы по функциям и внешнему виду, но требу- ют очень высокой точности изготовления. В оптическом разъемном соединении необходимо прецизионное совмещение и центровка сердцевины обоих волокон. Поскольку их диаметр весьма мал (например, 50 мкм), требования к точности очень высоки: допуск имеет порядок одного микрона.

Сейчас используются оптические разъемы множества различных типов. Разъем SMA, использовавшийся еще до изобретения одномодовых волокон, до недавнего времени оставался наиболее распространенным. На рис. 8 показаны детали конструкции этого разъема.



Рис. 8. Конструкция разъема SMA

Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами.

Для многомодовых волокон сейчас чаще всего применяется разъем ST, разработанный компанией AT&T. В нем применен байонетный фиксатор, а общие потери меньше, чем в SMA. Подобранная пара разъемов ST обеспечивает уровень потерь менее 1 дБ (20%) и не требует дополнительных направляющих втулок или других подобных элементов. Специальный выступ, не дающий разъему поворачиваться, гарантирует, что при соединении оптические волокна всегда будут устанавливаться в одно и то же положение друг относительно друга, что обеспечивает стабильность характеристик разъемного соединения.

Разъемы ST выпускаются как для многомодовых, так и для одномодовых световодов - основное различие состоит в величине допусков. Следует иметь в виду, что многомодовые разъемы ST будут корректно работать только с многомодовыми световодами. Более дорогие одномодовые разъемы ST можно использовать как с одномодовыми, так и с многомодовыми световодами. Процедуры установки разъемов ST и SMA на кабель сходны и занимают примерно одинаковое время. На рис. 9 показаны основные элементы ставшего промышленным стандартом разъема ST.



Рис. 9. Основные элементы разъема ST

Неразъемные соединения световодов

Хотя для соединения двух световодов можно использовать оптические разъемы, существуют другие методы, обеспечивающие значительно более низкие потери. Два наиболее распространенных - механическое соединение и сварное соединение. Оба обеспечивают уровень потерь от 0,15 до 0,1 дБ (3-2%).

Для механического соединения концы световодов освобождаются от оболочек, их торцы очищаются и точно совмещаются с использованием специального механического приспособления. На место соединения наносится оптический гель, снижающий до минимума потери на отражение. Совмещенные концы световодов удерживаются на месте запорным механизмом.

Оптические приемники

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик.

Основная задача оптического приемника - преобразование модулированного светового потока, поступающего из оптоволокна, в копию исходного электрического сигнала, поданного на передатчик. В качестве детектора в приемнике обычно используется PIN- или лавинный фотодиод, который устанавливается на оптическом соединителе (подобном используемому для источников света). У фотодиодов обычно довольно большой чувствительный элемент (несколько микрометров в диаметре), поэтому требования к точности позиционирования оптического волокна не такие жесткие, как для передатчиков.

Важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя.

Интенсивность излучения, выходящего из оптоволокна, достаточно мала, и в оптических приемниках устанавливаются внутренние усилители с большим коэффициентом усиления. Поэтому важно использовать приемники только с тем типоразмером волокна, для которого они предназначены, иначе может возникнуть перегрузка усилителя. Если, например, пара передатчик-приемник, предназначенная для одномодового оптоволокна, используется с многомодовым, то в приемник поступит слишком много света, что вызовет его насыщение и серьезное искажение выходного сигнала. Аналогично, при использовании одномодового волокна с передатчиком и приемником, рассчитанными на многомодовое, до приемника дойдет мало света, и выходной сигнал будет содержать много шума или вообще не появится. Единственный случай, когда несоответствие приемника и передатчика типу волокна может оказаться полезным - чрезмерные потери в световоде. Тогда дополнительные 5-15 дБ, которые даст замена одномодового волокна на многомодовое, спасут положение и позволят получить работоспособную систему. Однако это экстремальная ситуация, и такое решение не рекомендуется для нормального применения.

Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.

Как и передатчики, оптические приемники выпускаются в аналоговом и цифровом вариантах. В них обоих используется аналоговый предварительный усилитель, за которым включен аналоговый или цифровой выходной каскад.

На рис. 10 показана функциональная схема простого аналогового оптического приемника. Первый каскад - операционный усилитель, включенный как преобразователь тока в напряжение. Слабый ток, генерируемый фотодиодом, преобразуется здесь в напряжение, амплитуда которого обычно составляет несколько милливольт. В следующем каскаде, представляющим собой простой усилитель напряжения, сигнал усиливается до необходимого уровня.

Функциональная схема цифрового оптического приемника показана на рис. 11. Как и в случае аналогового приемника, первый каскад представляет собой преобразователь тока в напряжение. Его выходной сигнал поступает на компаратор напряжения, который выдает чистый цифровой сигнал с малой длительностью перепадов. Регулятор уровня срабатывания компаратора, если он есть, используется для точной настройки симметрии восстановленного цифрового сигнала.

Часто в приемники для наиболее точного воспроизведения входного сигнала добавляются дополнительные каскады, которые работают как линейные усилители для коаксиальных кабелей, преобразователи протоколов и т.п. Следует помнить, что электронные приемники сигнала, в отличие от оптоволоконного кабеля, восприимчивы к электромагнитным помехам, поэтому при работе с ними следует использовать стандартные меры защиты - экранирование, заземление и т.п.



Рис. 10. Простейший аналоговый оптический приемник



Рис. 11. Простейший цифровой оптический приемник

Разработка оптоволоконной системы

При разработке оптоволоконной системы следует учитывать множество факторов, каждый из которых вносит свой вклад в конечную цель - гарантию того, что в приемник поступит достаточное количество света. Без достижения этой цели система не будет работать правильно. На рис. 12 указаны многие из этих факторов.



Рис. 12. Важнейшие параметры, которые необходимо учитывать
при разработке оптоволоконной системы

При инженерной разработке оптоволоконной системы рекомендуется использовать следующую пошаговую процедуру:

  1. Выбор приемника и передатчика, подходящих для того типа сигнала, который необходимо передавать (аналоговый, цифровой, видеосигнал, RS-232, RS-422, RS-485 и т.д.).
  2. Определение имеющихся источников питания (переменное напряжение, постоянное напряжение и др.).
  3. Определение, при необходимости, специальных требований (например, импедансов, полосы пропускания, специальных разъемов и диаметра волокна и т.п.).
  4. Расчет общих потерь в системе (в децибелах): суммирование потерь в кабелях, в разъемных и неразъемных соединениях. Эти характеристики можно получить у производителей электронных устройств и оптоволоконных кабелей.
  5. Сравнение полученной цифры потерь с допустимым значением уровня сигнала на входе приемника. Следует подстраховаться, добавив запас как минимум в 3 дБ на всю систему.
  6. Проверка соответствия полосы пропускания системы потребностям передачи нужного типа сигнала. Если расчеты покажут, что полоса пропускания окажется недостаточной для передачи сигнала на нужное расстояние, то следует либо выбрать другой приемник и передатчик (другую длину волны), либо рассмотреть возможность использования более дорогого и качественного оптоволоконного кабеля с меньшими потерями.

Контрольный перечень параметров, необходимых для разработки оптоволоконной системы передачи данных

Назначение (краткое описание задачи):
Параметры аналогового сигнала:
Входное напряжение
Входной импеданс
Выходное напряжение
Выходной импеданс
Отношение сигнал/шум
Полоса пропускания
Разъемы
Другие данные
Параметры цифрового сигнала:
Тип интерфейса (RS-232, 422, 485 и т.п.)
Скорость передачи данных
Способ связи (по постоянному или переменному току)
Допустимая частота битовых ошибок
Разъемы
Другие данные
Требования к источнику питания:
Напряжение
Ток
Переменное или постоянное напряжение
Разъемы
Другие данные

Требования к оптоволоконной линии:
Длина линии
Длина волны света
Допустимые потери
Оптические разъемы
Тип оптоволокна
Диаметр оптоволокна
Условия монтажа
Общие требования:
Размер корпуса
Способ монтажа
Характеристики окружающей среды
Диапазон рабочих температур
Диапазон температур хранения
Другие данные
Дополнительные комментарии:

Введение

Сегодня связь играет важную роль в нашем мире. И если ранее для передачи информации использовались медные кабели и провода, то теперь наступило время оптических технологий и оптоволоконных кабелей. Сейчас, совершая звонок по телефону на другой конец света (например, из России в Америку) или же загружая из интернета любимую мелодию, которая лежит на сайте где-нибудь в Австралии, мы даже не задумываемся, каким образом нам удаётся это сделать. А происходит это благодаря применению оптоволоконных кабелей. Для того чтобы соединить людей, сделать их ближе друг к другу или же к желаемому источнику информации, приходится соединять континенты. В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели. В настоящее время волоконно-оптические кабели проложены по дну Тихого и Атлантического океанов и практически весь мир "опутан" сетью волоконных систем связи (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Европейские страны через Атлантику связаны волоконными линиями связи с Америкой. США, через Гавайские острова и остров Гуам - с Японией, Новой Зеландией и Австралией. Волоконно-оптическая линия связи соединяет Японию и Корею с Дальним Востоком России. На западе Россия связана с европейскими странами Петербург - Кингисепп - Дания и С.-Петербург - Выборг - Финляндия, на юге - с азиатскими странами Новороссийск - Турция. При этом главной движущей силой развития оптоволоконных линий связи является Интернет.

Оптоволоконные сети безусловно являются одним из самых перспективных направлений в области связи. Пропускные способности оптических каналов на порядки выше, чем у информационных линий на основе медного кабеля.

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

Кроме того оптоволокно невосприимчиво к электромагнитным полям, что снимает некоторые типичные проблемы медных систем связи. Оптические сети способны передавать сигнал на большие расстояния с меньшими потерями. Не смотря на то, что эта технология все еще остается дорогостоящей цены на оптические компоненты постоянно падают, в то время как возможности медных линий приближаются к своим предельным значениям и требуют все больше затрат на дальнейшее развитие этого направления.

Мне кажется, тема волоконно-оптических линий связи в настоящее время является актуальной, перспективной и интересной для рассмотрения. Именно поэтому я выбираю ее для своей курсовой работы и считаю, то за ВОЛС будущее.

1. История создания

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Практическое применение технологии нашлось лишь в ХХ веке.

В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки.

Изобретение в 1970 году специалистами компании Corning оптоволокна принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Е Первые широкомасштабные эксперименты связанные с появлением стандарта FDDI. Эти сети первого поколения работают до сих пор.

Е Массовое использование волоконной оптики, связанное с производством более дешевых комплектующих. Темпы роста волоконно-оптических сетей носят взрывной характер.

Е Рост скоростей передачи информации, появление технологий волнового уплотнения (WDM, DWDM)/ Новые типы волокон.

2. Волоконно-оптические линии связи как понятие

1 Оптическое волокно и его виды

Волокно-оптическая линия связи (ВОЛС) - это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известных под названием «оптическое волокно». Так что же это такое?

Оптическое волокно - чрезвычайно тонкий стеклянный цилиндр, называемый жилой (core), покрытый слоем стекла (Рис.1), называемого оболочкой, с иным, чем у жилы, коэффициентом преломления. Волокно характеризуется диаметрами этих областей - например, 50/125 означает волокно с диаметром сердцевины 50 мкм и внешним диаметром оболочки 125 мкм.

Рис.1 Структура оптоволокна

Свет распространяется по сердцевине волокна за счёт последовательных полных внутренних отражений на границе раздела между сердцевиной и оболочкой; его поведение во многом похоже на то, как если бы он попал в трубу, стенки которой покрыты зеркальным слоем. Однако в отличие от обычного зеркала, отражение в котором довольно неэффективно, полное внутреннее отражение по существу близко к идеальному - в этом заключается их коренное отличие, позволяющее свету распространяться вдоль волокна на большие расстояния с минимальными потерями.

Волокно, изготовленное таким образом ((Рис.2) а)), называется волокном со ступенчатым профилем показателя преломления и многомодовым, поскольку для распространения луча света существует много возможных путей, или мод.

Это множество мод приводит к дисперсии (уширению) импульса, поскольку каждая мода проходит в волокне различный путь, а поэтому разные моды имеют разную задержку передачи, проходя от одного конца волокна до другого. Результат этого явление - ограничение максимальной частоты, которую можно эффективно передавать при данной длине волокна - увеличение или частоты, или длины волокна сверх предельных значений по существу приводит к слиянию следующих друг за другом импульсов, из-за чего их становится невозможно различить. Для типового многомодового волокна этот предел равен примерно 15 МГц км, что означает, что видеосигнал с полосой, например, 5 МГц может быть передан на максимальное расстояние в 3 км (5 МГц х 3 км = 15 МГц км). Попытка передать сигнал на бóльшее расстояние приведёт к прогрессирующей потере высоких частот.

Рис.2 Типы оптического волокна

Для многих применений эта цифра недопустимо велика, и шёл поиск конструкции волокна с более широкой полосой пропускания. Один из путей - уменьшение диаметра волокна до весьма малых значений (8-9 мкм), так что становится возможной только одна мода. Одномодовые, как их называют, волокна ((Рис.2) b)) весьма эффективно снижают дисперсию, и результирующая полоса - во много ГГц км - делает их идеальными для телефонных и телеграфных сетей общего пользования (РТТ) и кабельного сетей телевидения. К сожалению, волокно столь малого диаметра требует применения мощного, прецизионно совмещённого, а поэтому сравнительно дорогостоящего излучателя на лазерном диоде,что снижает их притягательность для многих применений, связанных малой протяжённостью проектируемой линии.

В идеале требуется волокно с полосой пропускания того же порядка, что и одномодового волокна, но с диаметром, как у многомодового, чтобы было возможным применение недорогих передатчиков на светодиодах. До некоторой степени этим требованиям удовлетворяет многомодовое волокно с градиентным изменением показателя преломления ((Рис.2) с)). Оно напоминает многомодовое волокно со ступенчатым изменением показателя преломления, о котором говорилось выше, но показатель преломления его сердцевины неоднороден - он плавно изменяется от максимального значения в центре до меньших значений на периферии. Это приводит к двум следствиям. Первое - свет распространяется по слегка изгибающемуся пути, и второе, и более важное - различия в задержке распространения разных мод минимальны. Это связано с тем, что высокие моды, входящие в волокно под бóльшим углом и проходящие больший путь, на самом деле начинают распространяться с большей скоростью по мере того, как они удаляются от центра в зону, где показатель преломления снижается, и в основном движутся быстрее, чем моды низших порядков, остающиеся вблизи оси в волокна, в области высокого показателя преломления. Увеличение скорости как раз компенсирует больший проходимый путь.

Многомодовые волокна с градиентным показателем преломления не являются идеальными, но тем не менее они демонстрируют весьма неплохие значения полосы. Поэтому в большинстве линий малой и средней протяжённости выбор такого типа волокон оказывается предпочтительным. На практике это означает, что полоса пропускания лишь изредка оказывается параметром, который следует принимать во внимание.

Однако для затухания это не так. Оптический сигнал затухает во всех волокнах, со скоростью, зависящей от длины волны передатчиком источником света (Рис.3). Как упоминалось ранее, существует три длины волны, на которых затухание оптического волокна обычно минимально, - 850, 1310 и 1550 нм. Они известны как окна прозрачности. Для многомодовых систем окно на длине волны в 850 нм - первое и наиболее часто используемое (наименьшая цена). На этой длине волны градиентное многомодовое волокно хорошего качества показывает затухание порядка 3 дБ/км, что делает возможной реализацию связи в замкнутой ТВ системе на расстояниях свыше 3 км.

Рис.3 Зависимость затухания от длины волны

На длине волны 1310 нм то же самое волокно показывает ещё меньшее затухание - 0,7 дБ/км, позволяя тем самым пропорционально увеличить дальность связи до примерно 12 км. 1310 нм - это также первое рабочее окно для одномодовых оптоволоконных систем, затухание при этом составляет около 0,5 дБ/км, что в сочетании с передатчиками на лазерных диодах позволяет создавать линии связи длиной свыше 50 км. Второе окно прозрачности - 1550 нм - используется для создания ещё более длинных линий связи (затухание волокна менее 0,2 дБ/км).

2 Классификация ВОК

Оптоволоконный кабель известен уже долгое время, его поддерживали даже ранние стандарты Ethernet для пропускной способности 10 Мбит/с. Первый из них получил название FOIRL (Fiber-Optic Inter-Repeater Link), а последующий - 10BaseF.

На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli (Италия).

Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи. По условиям эксплуатации кабели подразделяют на две основные группы (Рис.4)

Внутриобъектовые предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.

Магистральные предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.

Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.

Рис.4 Классификация ВОК

3 Преимущества и недостатки волоконно-оптической передачи сигналов

3.1 Преимущества ВОЛС

Для многих применений волоконная оптика оказывается предпочтительнее в силу целого ряда преимуществ.

Низкие потери при передаче. Волоконно-оптические кабели с малыми потерями позволяют передавать сигналы изображения на большие расстояния без использования маршрутных усилителей или репитеров. Это особенно удобно для схем передачи на дальние расстояния - например, системы наблюдения за автострадами или железной дорогой, где нередки безрепитерные участки по 20 км.

Широкополосная передача сигнала. Широкая полоса передачи оптического волокна позволяет одновременно передавать по одному волоконно-оптическому кабелю высококачественное видео, звук и цифровые данные.

Невосприимчивость к помехам и наводкам. Полная нечувствительность оптоволоконного кабеля к внешним электрическим помехам и наводкам обеспечивает устойчивую работу систем даже в тех случаях, когда монтажники не уделили достаточное внимание расположению близлежащих сетей питания и т. п.

Электрическая изоляция. Отсутствие электропроводности для оптоволоконного кабеля означает, что уходят проблемы, связанные с изменениями потенциала земли, характерные, например, для электростанций или железных дорог. Это же их свойство устраняет опасность повреждения оборудования, вызванного бросками тока от молний и т. п.

Лёгкие и компактные кабели. Крайне малые размеры оптических волокон и оптоволоконных кабелей позволяют вдохнуть вторую жизнь в битком набитые кабельные каналы. Например, один коаксиальный кабель занимает столько же места, сколько и 24 оптических кабеля, каждый их которых предположительно может одновременно передавать 64 видеоканала и 128 аудио- или видеосигналов.

Неустаревающая линия связи. Простой заменой оконечного оборудования, а не самих кабелей, волоконно-оптические сети можно модернизировать для передачи большего объёма информации. С другой стороны, часть или даже всю сеть можно использовать для совершенно другой задачи, например, объединения в одном кабеле локальной вычислительной сети и замкнутой ТВ системы.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОЛС. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди.

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

3.2 Недостатки ВОЛС

Высокая сложность монтажа. Высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно.

Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться.

Оптоволоконный кабель чувствителен к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала.

3. Электронные компоненты ВОЛС. Принцип передачи информации

В наиболее общем виде принцип передачи информации в волокно-оптических системах связи можно пояснить с помощью (Рис.5).

Рис.5 Принцип передачи информации в волокно-оптических системах связи

1 Передатчики для волоконной оптики

Наиболее важным компонентом волоконно-оптического передатчика является источник света (обычно полупроводниковый лазер или светодиод (Рис.6)). Оба служат одной и той же цели - генерации микроскопического светового пучка, который можно с высоким кпд ввести в волокно и с высокой частотой модулировать (изменять по интенсивности). Лазеры обеспечивают бóльшую интенсивность пучка, чем светодиоды, и допускают более высокую частоту модуляции; поэтому они часто используются для широкополосных линий большой протяжённости, например, телекоммуникации или кабельное телевидение. С другой стороны, светодиоды - более дешёвые и более стойкие приборы, к тому же вполне подходящие для большинства систем небольшой или средней протяжённости.

Рис.6 Способы ввода оптического излучения в оптоволокно

Помимо функционального назначения (т. е. какой сигнал он должен передавать), волоконно-оптический передатчик характеризуется ещё двумя важными параметрами, определяющими его свойства. Один - это его выходная мощность (интенсивность) оптического излучения. Второй - длина волны (или цвет) испускаемого света. Обычно это 850, 1310 или 1550 нм, значения, выбранные из условия совпадения с т. н. окнами прозрачности в характеристике пропускания материала оптического волокна.

3.2 Приёмники для волоконной оптики

Приёмники волоконной оптики решают жизненно важную задачу - детектирование чрезвычайно слабого оптического излучения, испускаемого из конца волокна, и усиление полученного электрического сигнала до требуемого уровня с минимальными искажениями и шумами. Минимальный уровень излучения, требующийся приёмнику для того, чтобы обеспечить приемлемое качество выходного сигнала, называется чувствительностью; разница между чувствительностью приёмника и выходной мощностью передатчика определяет максимально допустимые потери в системе в дБ. Для большинства замкнутых ТВ систем наблюдения со светодиодным передатчиком типовой является цифра в 10-15 дБ. В идеале приёмник должен нормально работать при изменении входного сигнала в широких пределах, поскольку обычно невозможно заранее точно предсказать, какова будет степень затухания в линии связи (т. е. длина линии, число стыков и т. п.). Во многих простых конструкциях приёмников для достижения требуемого уровня выходного сигнала используется ручная регулировка усиления, производимая при монтаже системы. Это нежелательно, поскольку неизбежны изменения в величине затухания линии, вызванные старением или изменением температуры и т. п., что диктует необходимость периодически подстраивать усиление. Во всех волоконно-оптических приёмниках применяется автоматическая регулировка усиления, которая отслеживает средний уровень входного оптического сигнала соответственно изменяет коэффициент усиления приёмника. Ни при монтаже, ни в процессе эксплуатации ручной регулировки не требуется.

оптический волокно связь кабель

4. Области применения ВОЛС

Волоконно-оптические линии связи (ВОЛС) позволяют передавать аналоговые и цифровые сигналы на дальние расстояния. Они также используются на малых, более управляемых расстояниях, например, внутри зданий. Растет количество пользователей Интернет - и у нас быстро строятся новые центры обработки данных (ЦОД), для взаимосвязи которых используется оптоволокно. Ведь при передаче сигналов со скоростью 10 Гбит/с затраты аналогичны «медным» линиям, но оптика потребляет значительно меньше энергии. Долгие годы приверженцы волокна и меди «бились» друг с другом за приоритет в корпоративных сетях. Зря потраченное время!

Действительно, областей применения оптики становится все больше, в основном, из-за указанных выше преимуществ перед медью. Волоконно-оптическое оборудование широко используется в медицинских учреждениях, например, для коммутации локальных видеосигналов в операционных. Оптические сигналы не имеют никакого отношения к электричеству, что идеально в плане обеспечения безопасности пациентов.

Волоконно-оптическим технологиям отдают предпочтение и военные, так как передаваемые данные трудно или даже невозможно считать извне. ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя. Оптика проникла во все ключевые направления - системы наблюдения, диспетчерские и ситуационные центры в зоны с экстремальными условиями эксплуатации.

Снижение стоимости оборудования позволило использовать оптические технологии в традиционно медных областях - на больших промышленных предприятиях для организации автоматизированных систем управления технологическим процессом (АСУ ТП), в энергетике, в системах безопасности и видеонаблюдения. Возможность передачи большого потока информации на дальние расстояния делает оптику идеально подходящей и востребованной практически во всех областях промышленности, где длина кабельных линий может достигать нескольких километров. Если для витой пары расстояние ограничено 450 метрами, то для оптики и 30 км не предел.

В качестве примера использования ВОЛС хочу привести описание замкнутой системы безопасности видеонаблюдения на типовой электростанции. Особенно актуальной и востребованной эта тема стала в последнее время, после принятия Правительством РФ постановления о противодействиях терроризму и перечня жизненно важных объектов подлежащих защите.

5. Оптоволоконные ТВ системы наблюдения

Процесс разработки системы, как правило, включает две составляющих:

Выбор подходящих активных компонентов передающего тракта, основанный на требуемой функции (или функциях), типе и количестве имеющихся или предлагаемых волокон и максимальной дальности передачи.

Конструкции пассивной инфраструктуры оптоволоконного кабеля, в том числе типы и технические характеристики магистрального кабеля, соединительные коробки, панели для наращивания кабелей (fibre patch panels).

1Компоненты тракта передачи видеонаблюдения

Прежде всего - какие компоненты на самом деле требуются, чтобы удовлетворить техническим характеристикам системы?

Системы с фиксированными камерами - такие системы чрезвычайно просты и обычно состоят из миниатюрного волоконно-оптического передатчика и либо модульного, либо монтируемого в стойке приёмника. Передатчик часто имеет размеры, достаточно малые для того, чтобы смонтировать его непосредственно в корпусе камеры, и снабжается коаксиальным байонетным разъёмом, оптическим соединителем ST и клеммами для подключения низковольтного источника питания (как правило, 12 В постоянного или переменного тока). Система наблюдения типовой электростанции состоит из нескольких десятков таких камер, сигналы с которых передаются на центральный пост управления, и в этом случае приёмники монтируются в стойку на стандартную 19-дюймовую карту формата 3U с общим блоком питания.

Системы на управляемых камерах с поворотными устройствах - такие системы более сложны, так как требуется дополнительный канал для передачи сигналов управления камерой. Вообще говоря, существует два типа системы дистанционного управления такими камерами - требующие однонаправленной передачи сигналов дистанционного управления (от центрального поста к камерам) и требующие двунаправленной передачи. Системы с двунаправленной передачей становятся всё более популярными, так как они позволяют получать от каждой камеры подтверждение приёма каждого управляющего сигнала, а поэтому обеспечивают большую точность и надёжность управления. В пределах каждой из этих групп существует широкий спектр требований на интерфейс, в том числе RS232, RS422 и RS485. Другие системы не используют цифровой интерфейс, но передают данные как последовательность звуковых сигналов по аналоговому каналу, подобно сигналам двухчастотного тонального набора в телефонии.

Рис.6 Передача сигналов дистанционного управления поворотным устройством по одному волокну

Все эти системы могут работать и с волоконно-оптическими кабелями при использовании соответствующего оборудования. При нормальных обстоятельствах одновременная передача оптических сигналов по одному волокну в противоположных направлениях нежелательна, так как из-за рассеянного отражения в волокне возникают взаимные помехи. В замкнутых ТВ системах этот эффект создаёт на изображении помехи всякий раз, когда задействовано управления камерой.

Для достижения двунаправленной передачи по одному волокну, не создающей взаимных помех, необходимо, чтобы передатчики на разных концах волокна работали на разных длинах волн, например, на 850 нм и на 1300 нм, соответственно (Рис.6). К каждому концу волокна подсоединяется ответвитель на мультиплексоре с разделением длин волн (WDM - wavelength division multiplexer), который обеспечивает, что каждый приёмник получает от находящегося на противоположном конце волокна передатчика свет только с нужной длиной волны (например, 850 нм). Нежелательные отражения от передатчика на ближнем конце оказываются в неправильном диапазоне (т. е. 1300 нм) и соответственно отсекаются.

Дополнительные возможности - хотя выбор фиксированной камеры или камеры на поворотном устройстве удовлетворяет требованиям большей части замкнутых ТВ систем наблюдения, существует ряд систем, в которых требуются дополнительные возможности, например, передача аудиоинформации - для общего оповещения, вспомогательных сообщений потребителю или связь по интеркому с удалённым постом. С другой стороны, частью интегрированной охранной системы могут быть контакты датчиков, срабатывающих при пожаре или появлении посторонних. Все эти сигналы можно передавать по оптоволокну - или по тому же, что используется сетью, или по другому.

2Мультиплексирование видеосигналов

На одном одномодовом оптоволокне возможно мультиплексирование до 64 видео и до 128 аудиосигналов или сигналов цифровых данных, или несколько меньшего числа - на многомодовом. В этом контексте под мультиплексированием имеется в виду одновременная передача полноэкранных видеосигналов в реальном времени, а не малокадровое или полиэкранное отображение, к чему чаще относится данный термин.

Способность передавать многие сигналы и дополнительную информацию по нескольким оптическим волокнам - весьма ценная, особенно для замкнутых ТВ систем наблюдения с большой протяжённостью, например, для автомагистралей или железных дорог, где минимизация числа оптоволоконных кабелей зачастую жизненно важна. Для других применений, с меньшей протяжённостью и сильно разбросанными камерами, преимущества не так очевидны, и здесь в первую очередь следует рассмотреть использование отдельной волоконной линии для каждого видеосигнала. Выбор того, мультиплексировать или нет, довольно сложен, и его необходимо делать только после рассмотрения всех моментов, в том числе топологии системы, общих затрат и, не в последнюю очередь, устойчивость к повреждениям сети.

3Инфраструктура кабельной сети

После того, как определены требования к тракту передачи, выполняется разработка инфраструктуры кабельной оптоволоконной сети, в которую входят не только сами кабели, но и все вспомогательные компоненты - соединительные коробки, панели для наращивания кабелей, обводные кабели.

Первая задача - подтвердить правильность выбора числа и типа оптических волокон, определённого на этапе выбора компонентов тракта. Если система не отличается большой протяжённостью (т. е. не длиннее примерно 10 км) и не предполагает мультиплексной передачи видеосигналов то, скорее всего, оптимальным выбором будет многомодовое волокно 50/125 мкм или 62,5/125 мкм с градиентным показателем преломления. Традиционно для замкнутых ТВ систем выбирается волокно 50/125 мкм, а для локальных вычислительных сетей - 62,5/125 мкм. Во всяком случае, каждое из них подходит для каждой из этих задач, и вообще, в большинстве стран для обеих целей применяется волокно 62,5/125 мкм.

Число потребных волокон можно определить исходя из количества и относительного расположения камер и из того, используется ли однонаправленное или двунаправленное дистанционное управление или мультиплексирование. Поскольку трубах. Кабели, предназначенные для прокладки во внешних каналах, обычно имеют влагозащиту или из алюминиевой ленты (сухие полые трубы), или из водоотталкивающего наполнителя (кабели с гелевым наполнителем). Кабель для противопожарной безопасности.

Многие замкнутые ТВ системы малой протяжённости имеют конфигурацию звезды, где от каждой камеры до поста управления проложен цельный участок кабеля. Для таких систем оптимальная конструкция кабеля будет содержать два волокна - соответственно для передачи видеосигнала и дистанционного управления. Такая конфигурация обеспечивает стопроцентный запас по ёмкости кабеля, так как при необходимости и видео, и сигналы дистанционного управления могут быть переданы по одному и тому же волокну. Более разветвлённые сети могут выиграть от использования обратной древовидной топологии (inverted branch & tree topology) (Рис.7). В таких сетях от каждой камеры двухжильный оптоволоконный кабель ведёт к местному "концентратору", где они соединяются в единый многожильный кабель. Сам же концентратор не сильно сложнее обычной всепогодной соединительной коробки и зачастую может быть объединён с корпусом оборудования одной из камер.

Прирост стоимости при добавлении оптоволоконных линий в уже существующий кабель незначителен, особенно по сравнению со стоимостью связанных с этим общественных работ, следует серьёзно подойти к возможности установки кабелей с запасом по ёмкости.

Волоконно-оптические кабели траншейного заглубления может содержать арматуру из стальной проволоки. В идеале все кабели должны изготавливаться из пламеостанавливающих материалов с низким дымовыделением, чтобы удовлетворять местным правилам, предназначенные для прокладки во внешней кабельной канализации или непосредственно в траншеях, обычно имеют конструкцию полой трубы, содержащей от 2 до 24 волокон в одной или нескольких

Рис.7 Древовидная топология волоконно-оптической сети

На посту управления входной волоконно-оптический кабель обычно приходит в блок сопряжения, смонтированный в 19" стойку, при этом каждое волокно имеет свой индивидуальный ST-коннектор. Для окончательного сопряжения с приёмником используются короткие переходные кабели повышенной жёсткости с ответными ST-коннекторами на каждом конце. Для выполнения всех монтажных работ не требуется никакого особого искусства, помимо разумного понимания необходимости осторожного обращения с оптическим волокном (например, нельзя сгибать волокно с радиусом менее 10 диаметров волокна) и требований общей гигиены (т. е. чистоты).

4Бюджет оптических потерь

Может показаться странным, что подсчёт бюджета оптических потерь происходит на столь позднем этапе процесса разработки, однако на самом деле сколько-нибудь точный его расчёт возможен только после того, как инфраструктура кабельной сети полностью определена. Цель расчёта - определить потери для наихудшего пути прохождения сигнала (обычно самого длинного) и убедиться, что выбранное для тракта передачи оборудование с разумным запасом вписывается в полученные пределы.

Расчёт довольно прост и состоит в обыкновенном суммировании потерь в децибелах всех компонентов тракта, в том числе затухания в кабеле (дБ/км х длину в км) плюс оба коннектора и потери на стыках. Самая большая трудность - просто-напросто извлечь необходимые цифры потерь из документации изготовителя.

В зависимости от полученного результата может потребоваться переоценка выбранного для тракта передачи оборудования, чтобы обеспечить приемлемые потери. Например, может оказаться необходимым заказать оборудование с улучшенными оптическими параметрами, а если такового не найдётся - следует рассмотреть вопрос о переходе на окно прозрачности с большей длиной волны, где потери меньше.

5Тестирование системы и ввод её в эксплуатацию

Большинство специалистов по установке волоконно-оптических сетей предоставляют результаты оптических испытаний для вводимой в эксплуатацию оптоволоконной сети. Как минимум, они должны включать результаты измерений по сквозной передаче мощности оптического излучения для каждой оптоволоконной линии - это эквивалентно проверке целостности для обычной сети на медных кабелях с мультиплексорами электрических сигналов. Эти результаты представляются как величина потерь линии в дБ, и их можно непосредственно сравнить с техническими данными на выбранное для тракта передачи оборудование. Обычно считается нормальным иметь минимальный запас по величине потерь (обещанные параметры оборудования минус измеренная величина) в 3 дБ на неизбежные процессы старения, происходящие в оптоволоконных линиях, особенно в передатчиках.

Заключение

Зачастую у специалистов бытует мнение, что оптоволоконные решения значительно дороже медных. В заключительной части моей работы мне хотелось бы подвести итог ранее сказанному и попытаться все таки выяснить, так это или нет, сравнив оптические решения компании 3M Volution с типовой экранированной системой 6-й категории, обладающей наиболее близкими многомодовой оптике

В ориентировочный расчет стоимости типовой системы была включена цена порта 24-портовой коммутационной панели (в расчете на одного абонента), абонентских и коммутационных шнуров, абонентского модуля, а также стоимость горизонтального кабеля за 100 метров (см. таблицу 1).

Таблица 1 Расчет стоимости абонентского порта СКС для «меди»6й категории и оптики

Этот простой расчет показал, что стоимость оптоволоконного решения всего на 35% больше, чем решения для витой пары 6-й категории, так что слухи об огромной дороговизне оптики несколько преувеличены. Причем стоимость основных оптических компонентов на сегодня сравнима или даже ниже, чем для экранированных систем 6-й категории, но, к сожалению, готовые оптические коммутационные и абонентские шнуры пока что в несколько раз дороже медных аналогов. Однако если по каким-либо причинам протяженность абонентских каналов в горизонтальной подсистеме превышает 100 м, оптике просто нет альтернативы.

В то же время низкое значение затухания оптического волокна и "иммунитет" к различным электромагнитным наводкам делает его идеальным решением для сегодняшних и будущих кабельных систем.

Структурированные кабельные системы, которые используют оптоволокно как для магистральных, так и для горизонтальных кабельных каналов, дают потребителям ряд серьезных преимуществ: более гибкая структура, меньшая занимаемая площадь в здании, высокая безопасность и лучшая управляемость.

Применение оптического волокна на рабочих местах позволит в будущем с минимальными затратами перейти на новые сетевые протоколы, такие как Gigabit и 10 Gigabit Ethernet. Это возможно благодаря ряду последних достижений в области оптоволоконных технологий: многомодовое оптоволокно с улучшенными оптическими характеристиками и полосой пропускания; оптические разъемы с малым форм-фактором, которые требуют меньшей площади и меньшего количества затрат при монтаже; плоскостные лазерные диоды с вертикальным резонатором обеспечивают передачу данных на большое расстояние с низкими затратами.